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Abstract 

Mistranslation by AI has led to bad 
outcomes, including erroneous arrests. To 
address this problem, we designed a tool 
called VeriCAT, short for Verification of 
Computer-Assisted Translation. We used a 
Quality Estimation model to predict a 
sentence-level quality score for individual 
snippets of Russian text that had been 
translated into English and we designed a 
simple user interface to display these 
scores, along with the text snippets, in a 
way that helps users determine whether to 
trust a specific machine-translated 
sentence. We evaluated VeriCAT by 
conducting a quantitative user study to 
measure how the tool impacted users’ 
ability to identify poor quality translations 
and we found that the tool significantly 
increased their accuracy on this task. We 
also demonstrated that users performed the 
task as accurately with VeriCAT’s predicted 
quality scores as they did with human-
generated quality scores. 

1 Introduction  

In 2017 Facebook’s machine translation (MT) 
algorithm incorrectly translated a construction 
worker’s Arabic-language post. The original post 
said “good morning" in Arabic, but was 
erroneously translated into Hebrew as “attack 
them," leading to the worker’s arrest and several 
hours of questioning. No Arabic-speakers were 
asked to verify the machine translation of the post 
leading up to the arrest (Hern, 2017). For many 
people who use machine translation, it is easy to 
forget that translated output is susceptible to error 
and, as illustrated by this situation, that translation 
errors can lead to severe consequences. Our goal 
in this work was to develop and evaluate a tool to 

help users determine when, and whether, to trust 
machine translation. 

Our prototype solution is called VeriCAT, 
short for Verification of Computer-Assisted 
Translation. The tool combines a Quality 
Estimation (QE) model with a simple user 
interface (UI). Our initial VeriCAT prototype 
assesses the translation quality of text snippets 
that have been translated from Russian into 
English by the FairSeq model (Ott et al., 2019). 
VeriCAT’s QE model is a trained version of 
OpenKiwi’s predictor-estimator model (Kim, et 
al., 2017). The UI displays output from this model 
– a predicted quality score, visualized as some 
value out of a possible 100 – for individual 
sentences of machine-translated text (Figure 1). 

The objective of QE is to train a machine 
learning model to predict a quality score for 
translated text that is similar to what a human 
would assign to that translation (Maučec and 
Donaj, 2019). MT model developers typically use 
QE for validation and model improvement and 
previous work has demonstrated the value of QE 
in post-editing. VeriCAT is novel in its use of QE 
to provide feedback directly to MT end users.  

Many MT accuracy metrics, such as BLEU 
score (Papineni et al., 2002), provide information 
about the accuracy of a MT model in general. For 
example, FairSeq has a BLEU score of 40.0 on 
Russian to English translation, calculated with the 
SacreBLEU standard (Post, 2018). These metrics, 
however, do not provide information about specific 
snippets of translated text. In contrast, a QE model 
outputs predictions about the translation quality of 
individual sentences. At the outset of this work, we 
hypothesized that predicted quality scores could 
benefit people using machine translated text, by 
helping them determine whether to trust a specific 
machine-translated sentence.  
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If a user of MT text is not a speaker of the 
original language and does not have additional 
contextual information, the only basis for judging 
translation quality is fluency, which refers to how 
well the text follows the target language’s norms, 
taking into account grammar and clarity (Maučec 
and Donaj, 2019). In many cases, fluency is a 
reasonable proxy for translation quality. However, 
this is not always true; for example, one common 
source of MT error is incorrect or inconsistent 
translation of names and proper nouns.   

To test our hypothesis that QE could help end 
users of MT, we designed and conducted a 
quantitative user study. In this study, we measured 
how well the VeriCAT prototype helped users 
perform a task that required them to assess the 
quality of Russian text snippets that were translated 
into English. The task incorporated examples of 
erroneous translations that appeared fluent, i.e. 
where fluency was not an adequate proxy for 
translation quality. The results of our user study 
indicated: (1) that study participants with access to 
VeriCAT’s quality scores performed better on the 
task than those without; (2) that participants with 
access to sentence-level quality scores performed 
better than those who saw predictions of word-
level errors; and (3) that participants who saw 
VeriCAT’s predicted quality scores performed as 
well as those who saw human-generated quality 
scores (which we treated as ground-truth). These 
results illustrated the utility of VeriCAT and 
supported our hypothesis that QE can be a helpful 
source of feedback not only for MT model 
developers, but also to MT users.  

2 Related Work 

Recent advances have greatly improved the 
accuracy of machine translation, but human 
translators still outperform MT in overall 
accuracy and in preserving the original meaning 
of translated text (Maučec and Donaj, 2019). As 
MT becomes more widespread, translation 
inaccuracies are a greater concern. One way to 
address this issue is to use a second machine 
learning model to assess the quality of the MT 
model’s output.  

MT quality can be measured with a variety of 
metrics. Direct Assessment (DA) scores capture 
human judgements of translation fluency and 
adequacy (Snover et al., 2009); metrics such as 
BLEU, NIST, METEOR, and TER approximate 
human judgement through automated means 

(Maučec and Donaj, 2019); and HTER (human-
mediated translation error rate) blends automated 
assessments and human judgments by capturing 
the number of post edits made to a MT by a 
human translator (Maučec and Donaj, 2019). 
Different metrics are suited for different 
applications. Some are appropriate for document-
level quality assessment, whereas others can be 
used to train a QE model to predict the quality of 
specific sentences. HTER and DA have 
previously been used to train sentence-level QE 
models (Graham et al., 2017; Turchi et al., 2014). 

There are some existing tools designed to 
make QE accessible to non-MT experts. 
Avramidis created a GUI for this purpose (2017), 
but it required users to be proficient in Python and 
the command line. Collins et al.’s lattice 
visualization illustrates uncertainty in MT text 
(2007), but we doubt that this tool (which was 
designed for an instant messaging use case) could 
scale to full passages of text. Albrecht et al.’s 
human-AI collaborative system uses visualization 
to help users gain intuition about a translation’s 
source language to help them correct errors in MT 
(2009) and DeNeefe et al. developed an 
interactive tool called a DerivTool, which is 
intended to give users intuition about MT models 
(2005). However, VeriCAT is distinct in its use of 
QE to provide contextual information about 
particular snippets of text directly to MT users. 

We found little prior work related to the 
usability of MT or QE systems, effective 
communication of MT error, or how QE might 
impact a user’s ability to make decisions based on 
perceived translation quality. Martindale and 
Carpuat conducted a usability study to investigate 
whether revealing MT errors in fluency and 
adequacy might change users’ trust in MT (2018). 
They found that poor fluency in translations 
significantly influenced users’ trust of MT, but 
also, that trust was easily rebuilt. OpenKiwi 
(Kepler et al., 2019) performed a demo of a user 
interface for QE at ACL 2019; however, the team 
has not released their code, a demo, or a user 
study. There was a demonstration titled: “XAIT: 
An Interactive Website for Explainable AI for 
Text” at the IUI conference in 2020. However, 
when we reviewed the papers cited by this work 
we did not find any that related specifically to MT 
usability (Oduor et al., 2020).  

3 VeriCAT System Overview 

VeriCAT helps users assess the translation quality 
of Russian sentences that have been translated 
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into English using FairSeq (Ott et al., 2019). 
Commonly used MT accuracy metrics such as 
BLEU score (Papineni et al., 2002) provide 
information about the accuracy of a MT model in 
general, but VeriCAT is unique in providing 
information about the translation quality of 
individual sentences through an accessible UI. 
The tool is particularly helpful when translation 
fluency is a poor proxy for translation quality. 

3.1 Training Dataset 

The VeriCAT QE model is finetuned on a dataset 
composed of 7,000 labeled sentence pairs. The 
sources of this text are passages from Reddit and 
Russian Proverbs from wikiquotes. The training 
dataset is curated from these sources because they 
represent types of text on which machine 
translation models are challenged. Each sentence 
is translated using the pretrained FairSeq model 
(Ott et al., 2019) that performed best at World 
Machine Translation 2019 (news task, the most 
recent results from the annual benchmark for 
MT). Each sentence has 3 Direct Assessment 
(DA) score quality judgments by human 
translators. These DA scores were labeled by 
ModelFront. Each DA score is rated on a scale 
from 1-100, with 100 representing a perfect 
translation. Across the dataset the average score 
was 68. These labeled data were contributed to the 
World Machine Translation Workshop (Nov 
2020) as part of the Quality Estimation Shared 
Task (https://statmt.org/wmt20). 

3.2 Quality Estimation (QE) Model 

Quality Estimation benchmarks are set annually at 
the World Machine Translation QE Shared task. At 
the time of this study, the most accurate QE model 
available in the open source was the Predictor-
Estimator model (Kim et al., 2017), open-sourced 
by OpenKiwi (Kepler et al., 2019) and the 
benchmark for WMT 2020. We pretrained the 
predictor model on the same parallel datasets that 
the FairSeq translation model (Ott et al., 2019) was 
trained on. We finetuned the estimator model on 
the novel Russian-English QE dataset described 
above, tuning the following hyperparameters from 
the baseline model: epochs, hidden LSTM layers, 
learning rate, batch size, and dropout. We obtained 
a Pearson correlation of 0.62 on the development 
set, which we used to test, since the shared task test 
set was not known to us. We ran inference with this 
model to generate the predictions used in our UI 
demo and confirmed the correlation between 

predicted and actual scores for this data subset was 
0.67, which was in line with the model’s expected 
performance. 

3.3 User Interface (UI) 

In the VeriCAT UI, a passage of text is broken 
down into individual sentences. For each 
sentence, users see the original (Russian) text, the 
FairSeq translation (English), and VeriCAT’s 
quality score for that sentence (Figure 1). Quality 
scores are represented with a horizontal bar, 
where the percentage of the bar that is colored 
represents the score on a scale from 1 to 100. For 
clarity, the numerical value of the quality score is 
also displayed. These sentence-level quality 
scores are intended to help users quickly assess 
the translation quality for each sentence, to 
determine if the MT needs further inspection by a 
human. The demo UI also has the capacity to 
show predicted word-level errors in the translated 
text; these are highlighted in red.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4 Evaluation 

To evaluate VeriCAT and test if QE could provide 
useful feedback directly MT users we conducted a 
between-subjects experiment with participants 
recruited via Amazon’s Mechanical Turk. 

4.1 Task & Study Procedure  
In our user study experiment, we measured how 
well VeriCAT helped users perform a task that 
was analogous to that which motivated the design 
of the tool. We showed participants 3-sentence 
passages of text that had been translated from 
Russian into English with the FairSeq model (Ott 
et al., 2019). Participants were informed that a 
MT model had translated the passage and that 
they would be asked to answer comprehension 
questions based on the passage.  

  

Figure 1:  The VeriCAT user interface. 
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The quality of two of the translated sentences 
was good, but the third was poor. Prior to 
answering the comprehension questions, we gave 
participants (who did not speak Russian) the 
opportunity to select the sentence they believed 
was the poorest quality translation to be re-
translated by a human. Participants also had the 
option not to select any sentence for re-
translation. After providing the re-translation, we 
asked participants to answer two comprehension 
questions. We used their answers as an attention 
check, but for analysis, we scored participants’ 
accuracy based on whether they choose the 
sentence with the lowest quality translation 
(measured by a human-generated Direct 
Assessment score) for re-translation. 

4.2 Passage Type 

Participants repeated this task for four passages. 
We designed these passages to test whether 
participants prioritized the quality scores or (their 
own intuition based on) fluency, as a primary 
indicator of poor translation quality. To do this  
we identified translated sentences in each of four 
categories: (1) good quality/good fluency, (2) 
good quality/ poor fluency, (3) poor quality/good 
fluency, (4) poor quality/poor quality. In our 
study, two passages include sentences of types 
(1), (2), and (3). The other two passages include 
sentences of types (1), (2) and (4). We expected 
categories (2) and (3) – where quality scores 
conflicted with fluency (and intuition) -- to be the 
most difficult for participants to assess correctly. 

4.3 Experimental Conditions 

We recruited 385 study participants via Amazon’s 
Mechanical Turk and randomly assigned them to 
5 groups. The Baseline group saw only the 
original (Russian) and translated (English) text 
snippets, with no additional information from the 
QE model. Participants in the other four groups 
were shown different versions of the VeriCAT UI 
each showing different information about 
translation quality. Group 1 saw sentence-level 
quality scores, drawn from human-generated DA 
scores; Group 2 saw word-level errors 
(highlighted in red) in each translated sentence; 
Group 3 saw both sentence-level quality scores 
and word-level errors; and Group 4 saw 
sentence-level quality scores predicted by 
VeriCAT’s Quality Estimation model. These 
predicted scores were imperfect and reflected a 
smaller magnitude of difference between the 
scores of the “good” and “poor” quality sentences 

than the human-generated DA scores, but the 
poorly translated sentences always had the lowest 
predicted score. Two of these conditions are 
shown in Figure 2.  

 
 

 
 
 
 

 
 
 
 
 
 
 
 

 
 
 

 

4.4 Hypotheses 

[H1] We expected that participants in the 
Baseline condition (who received no information 
about translation quality from the QE model) 
would rely on fluency as a proxy for translation 
quality, following prior work by Martindale and 
Carpuat (2018). Therefore, we expected them to 
have lower accuracy on our experimental task.  

[H2] We anticipated that different types of 
information about translation quality would not 
provide equivalent utility to users. Therefore, we 
expected to see differences in participants’ 
performance across Groups 1, 2, and 3.  

[H3, exploratory] We did not know how 
VeriCAT’s predicted quality scores would 
compare to human-generated quality scores, in 
terms of their effect on users’ performance, but 
this is what we hoped to investigate by comparing 
participants’ performance in Groups 1 and 4.   

4.5 Results Summary 

To calculate participants’ performance accuracy, 
we summed the number of correct answers across 
all four passages and divided by 4. Table 1 
summarize results across all 4 passages and 
Figure 3 shows a more detailed breakdown of 
responses for Passages 1 and 2.  

[H1] Participants with access to information 
about translation quality (displayed through the 
VeriCAT UI) performed the task better (i.e. they 

Figure 2:  Experimental conditions. 

 

Group 1

Group 2

Group 3
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more frequently selected the poorest quality 
sentence for re-translation by a human). Only 6% 
of participants in the baseline group selected 
correctly, compared to 39% of participants across 
Groups 1, 2, 3 and 4. Interestingly, we saw that 
participants in the baseline condition often opted 
for no-retranslation. Proportions of participants 
giving each answer for Passages 1 & 2 are shown 
in Figure 3. To test if the differences we observed 
were significant, we ran a Kruskal-Wallis test of 
𝑜𝑣𝑒𝑟𝑎𝑙𝑙_𝑠𝑐𝑜𝑟𝑒 ∼ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 and found a significant 
difference across conditions (𝐻(2) = 29.7, 𝑝 < 
0.001). A post-hoc Dunn’s multiple comparisons 
test with a Bonferroni corrected alpha (0.02) 
showed significant pairwise differences between 
Human Quality and baseline (𝑍 = 5.2, 𝑝 < 0.01), 
and baseline and Predicted Quality (𝑍 = −4.3, 𝑝 < 
0.01). [H2] Different types of information about 
MT quality did not provide equivalent utility to 
users. 52% of participants who saw sentence-level 
quality scores (Group 1) selected correctly, 
compared to 24% who saw word-level errors 
(Group 2). Access to additional information did 
not improve participants’ performance. 52% of 
participants who saw sentence-level quality 
scores selected correctly (Group 1), compared to 
42% who saw sentence-level quality scores and 
word-level errors (Group 3).  

   
 
 
 
 
 
 
 
 
 

 
 
 

[H3] VeriCAT’s predicted quality scores 
provided considerable utility. 37% of participants 
who saw predicted quality scores (Group 4) made 
the correct selection. While this was lower than 
the 52% in Group 1, it was notably higher than the 
6% who selected correctly in the Baseline group. 
We interpreted this result as suggesting that the 
accuracy of VeriCAT’s QE model, despite only .6 
correlation with human judgement, still provided 
substantial value to end users. Figure 4 shows 
𝑜𝑣𝑒𝑟𝑎𝑙𝑙_𝑠𝑐𝑜𝑟𝑒 distributions by condition. 

5 Lessons Learned 

In this work, we sought to test whether QE could 
provide value directly to MT users, by helping 
them assess the translation quality of individual 
sentences. Our results indicated that VeriCAT, 
the tool we designed for this purpose, did 
substantially improve users’ performance on a 
task that asked them to identify poor quality MT. 
While performance was slightly lower with 
predicted quality scores (from our QE model) 
than with human-generated quality scores, both 
led to significantly better performance than 
(users’ intuitive assessment of) translation 
fluency. Additionally, our results suggested that 
some methods of displaying information about 
MT quality were better than others. Participants 
shown sentence-level quality scores significantly 
outperformed those who saw word-level errors. 
They also outperformed those who saw sentence-
level scores and word-level errors, suggesting that 
the additional information provided by word-level 
errors was not helpful. This finding informed our 
thinking about VeriCAT’s QE model and as a 
result, we decided not to develop word-level error 
prediction features. This is an example of how UI 
prototyping and evaluation can inform model 
design, by revealing which features provide the 
most value to end users.   

 
  

 

 Correct 
selection 

Incorrect 
selection 

No 
selection 

Baseline 6 44 50 

Avg 1-4 39 34 27 

Group 1 52 28 20 

Group 2 24 36 40 

Group 3 42 38 19 

Group 4 37 33 30 

 

Table 1: Summary of Participant Responses (%) 

  

Figure 4:  Distribution of Responses. 

 

Figure 3:  Participant Responses for Passages 1 & 2. 
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Links 
Source code for VeriCAT is available at:  
https://github.com/IQTLabs/VeriCAT  
A demo is available here: 
https://iqtlabs.github.io/VeriCAT-UI/ 
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